Bayesian posteriors for arbitrarily rare events.

نویسندگان

  • Drew Fudenberg
  • Kevin He
  • Lorens A Imhof
چکیده

We study how much data a Bayesian observer needs to correctly infer the relative likelihoods of two events when both events are arbitrarily rare. Each period, either a blue die or a red die is tossed. The two dice land on side [Formula: see text] with unknown probabilities [Formula: see text] and [Formula: see text], which can be arbitrarily low. Given a data-generating process where [Formula: see text], we are interested in how much data are required to guarantee that with high probability the observer's Bayesian posterior mean for [Formula: see text] exceeds [Formula: see text] times that for [Formula: see text] If the prior densities for the two dice are positive on the interior of the parameter space and behave like power functions at the boundary, then for every [Formula: see text] there exists a finite [Formula: see text] so that the observer obtains such an inference after [Formula: see text] periods with probability at least [Formula: see text] whenever [Formula: see text] The condition on [Formula: see text] and [Formula: see text] is the best possible. The result can fail if one of the prior densities converges to zero exponentially fast at the boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial models for the distribution of extremes

Statistical models for the occurrence of extreme or rare events has been applied in a variety of areas, but little work has been done in extending these ideas to spatial data sets. Here, a brief introduction to the theory of extreme-value statistics is given, and a hierarchical Bayesian framework is used to incorporate a spatial component into the model. Two examples are used to motivate the ap...

متن کامل

Bayesian updating rules and AGM belief revision

We interpret the problem of updating beliefs as a choice problem (selecting a posterior from a set of admissible posteriors) with a reference point (prior). We use AGM belief revision to define the support of admissible posteriors after observing zero probability events and investigate two classes of updating rules for probabilities : 1) ”minimum distance” updating rules which select the poster...

متن کامل

Empirical Bayes interval estimates that are conditionally equal to unadjusted confidence intervals or to default prior credibility intervals.

Problems involving thousands of null hypotheses have been addressed by estimating the local false discovery rate (LFDR). A previous LFDR approach to reporting point and interval estimates of an effect-size parameter uses an estimate of the prior distribution of the parameter conditional on the alternative hypothesis. That estimated prior is often unreliable, and yet strongly influences the post...

متن کامل

A tutorial on approximate Bayesian computation

This tutorial explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function, and hence that can be used to estimate posterior distributions of parameters for simulation-based models. We discuss briefly the philosophy of Bayesian inference and then present several algorithms for ABC. We then a...

متن کامل

Bayesian Posteriors Without Bayes' Theorem

The classical Bayesian posterior arises naturally as the unique solution of several different optimization problems, without the necessity of interpreting data as conditional probabilities and then using Bayes' Theorem. For example, the classical Bayesian posterior is the unique posterior that minimizes the loss of Shannon information in combining the prior and the likelihood distributions. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 19  شماره 

صفحات  -

تاریخ انتشار 2017